Понятие "вероятность", "случайность" существовали с незапамятных времен и употреблялись как в философских трактатах, так и в повседневной бытовой лексике.
Первая попытка вероятностных исчислений отмечена в трудах Г. Галилея (1564-1642), который использовал вероятность в расчетах измерений физических величин. Однако дату рождения теории вероятностей чаще всего относят к 1654 г. и связывают это с одним курьезным случаем, происшедшим с Шевалье де Море. Азартный француз выиграл большую сумму денег на пари, поспорив, что при четырехкратном броске игральной кости появится хоть одна "шестерка", и тут же проиграл его, поставив на появлении двух "шестерок" подряд в серии из 24 бросков.
Обескураженный Шевалье обратился к знаменитому математику Б. Паскалю (1623-1662). В результате творческой переписки великих французских математиков появилось не только решение поставленной де Море задачи, но и ряд теорий, заложивших основу исчисления вероятностей.
Итак, вероятностью измеряется неопределенность. Вероятность находится в центре статистической теории и измеряет возможность того или иного события.
Сформулируем основные постулаты вероятности:
Вероятность - это положительное число, которое находится в интервале между нулём и единицей.
Если вероятность равна нулю, то события быть не может.
Если вероятность равна единице, то событие обязательно должно произойти.
Вероятность дополнительного события (события не происходящего) равна единице минус вероятность события.
А.А, Белов, Б.А. Баллод, Н.Н. Елизарова. Теория вероятностей и математическая статистика в информационной деятельности: Учебное пособие/Иван.гос.энерг.ун-т.- Иваново, 2003
Связанные определения:
Вероятность события
Независимые повторные испытания Бернулли
Независимые события
Скачать
Актуальные курсы