При построении модели, адекватно описывающей изучаемый процесс в экономике, очень важную роль играет анализ правильности ее спецификации. Отрицательно на объясняющих свойствах модели сказывается как отсутствие значимой переменной, так и избыточное присутствие незначимой.
В случае, когда в модель не включена существенная переменная (существенной называют переменную, которая должна быть в модели согласно правильной теории), наблюдаются следующие последствия:
Например, предположим, что из модели исключена переменная Х2. Тогда в новой спецификации фактически рассматривается модель
, где
.
Если объясняющие переменные Х1 и Х2 коррелированы, то нарушается предпосылка теоремы Гаусса-Маркова о некоррелированности случайного члена и регрессоров, поскольку в этом случае между Х1 и u существует ненулевая корреляция. Оценки, полученные по методу наименьших квадратов для данной модели, уже не являются эффективными среди линейных оценок.
Оценки даже не являются несмещенными, поскольку для МНК оценки коэффициента β1 в этом случае получаем: . Наблюдается смещение
.
Включение несущественной переменной в модель не приводит к смещению оценок коэффициентов, но появляется другой недостаток – растут стандартные ошибки коэффициентов. Оценки становятся статистически незначимыми.
Если точная спецификация модели неизвестна (что практически всегда и бывает), то пользуются критериями, позволяющими выбирать из некоторого множества моделей наилучшую.
Наиболее распространенными критериями является критерий Шварца (Schwarz) и критерий Акайке (Akaike). Оба критерия позволяют выбирать наилучшую модель из множества различных спецификаций. Критерии численно построены так, чтобы учесть влияние на качество подгонки модели двух противоположных тенденций.
При добавлении переменных в модель качество подгонки в общем случае увеличивается. Заметим, что число регрессоров должно быть разумным, чтобы не вызвать "искусственной подгонки" зависимой переменной объясняющими.
С другой стороны, недостаточное включение переменных в модель дает большую стандартную ошибку, и качество подгонки снижается.
Формулы для расчета критериев Akaike и Schwarz:
,
,
где - выборочная дисперсия, К – число ограничений на степени свободы.
Значение К в этом случае равно числу независимых переменных, включая свободный член.
Таким образом, если в модели присутствует два регрессора и свободный член, то число ограничений на степени свободы будет равно трем.
Первое слагаемое представляет собой штраф за большую дисперсию, второе – штраф за использование дополнительных переменных.
Критерии рассчитываются для каждой рассматриваемой спецификации. При сравнении двух типов моделей предпочтение отдается спецификации, которая имеет наименьшие значения критериев.
Связанные определения:
Линейная регрессия
Матрица плана
Общая линейная модель
Регрессия
Скачать
Актуальные курсы