Определение нулевой и альтернативной гипотезы, уровня статистической значимости
Получение статистики критерия, определение критической области
Часто делают выборку, чтобы определить аргументы против гипотезы относительно популяции (генеральной совокупности). Этот процесс известен как проверка гипотез (проверка статистических гипотез или проверка значимости), он представляет количественную меру аргументов против определенной гипотезы.
Установлено 5 стадий при проверке гипотез:
При проверке значимости гипотезу следует формулировать независимо от используемых при ее проверке данных (до проведения проверки). В таком случае можно получить действительно продуктивный результат.
Всегда проверяют нулевую гипотезу (), которая отвергает эффект (например, разница средних равняется нулю) в популяции.
Например, при сравнении показателей курения у мужчин и женщин в популяции нулевая гипотеза означала бы, что показатели курения одинаковые у женщин и мужчин в популяции.
Затем определяют альтернативную гипотезу (), которая принимается, если нулевая гипотеза неверна. Альтернативная гипотеза больше относится к той теории, которую собираются исследовать. Итак, на этом примере альтернативная гипотеза
заключается в утверждении, что показатели курения различны у женщин и мужчин в популяции.
Разницу в показателях курения не уточнили, т.е. не установили, имеют ли в популяции мужчины более высокие или более низкие показатели, чем женщины. Такой подход известен как двусторонний критерий, потому что учитывают любую возможность, он рекомендуется постольку, поскольку редко есть уверенность заранее в направлении какого-либо различия, если таковое существует.
В некоторых случаях можно использовать односторонний критерий для гипотезы , в котором направление эффекта задано. Его можно применить, например, если рассматривать заболевание, от которого умерли все пациенты, не получившие лечения; новый препарат не мог бы ухудшить положение дел.
Уровень значимости. Важным этапом проверки статистических гипотез является определение уровня статистической значимости , т.е. максимально допускаемой исследователем вероятности ошибочного отклонения нулевой гипотезы.
После того как данные будут собраны, значения из выборки подставляют в формулу для вычисления статистики критерия (примеры различных статистик критериев см. ниже). Эта величина количественно отражает аргументы в наборе данных против нулевой гипотезы.
Критическая область. Для принятия решения об отклонении или не отклонении нулевой гипотезы необходимо также определить критическую область проверки гипотезы.
Выделяют 3 вида критических областей:
Рис. 1 Двусторонняя критическая область
Рис. 2 Левосторонняя критическая область
Рис. 3 Правосторонняя критическая область
- заданный исследователем уровень значимости.
Если наблюдаемое значение критерия (K) принадлежит критической области (Kкр, заштрихованная область на рис.1-3), гипотезу отвергают, если не принадлежит - не отвергают.
Для краткости можно записать и так:
| K | > Kкр - отклоняем H0
| K | < Kкр - не отклоняем H0
Все статистики критерия подчиняются известным теоретическим распределениям вероятности. Значение статистики критерия, полученное из выборки, связывают с уже известным распределением, которому она подчиняется, чтобы получить значение р, площадь обоих "хвостов" (или одного "хвоста", в случае односторонней гипотезы) распределения вероятности.
Большинство компьютерных пакетов обеспечивают автоматическое вычисление двустороннего значения р.
Значение р — это вероятность получения нашего вычисленного значения критерия или его еще большего значения, если нулевая гипотеза верна.
Иными словами, p - это вероятность отвергнуть нулевую гипотезу при условии, что она верна.
Нулевая гипотеза всегда относится к популяции, представляющей больший интерес, нежели выборка. В рамках проверки гипотезы мы либо отвергаем нулевую гипотезу и принимаем альтернативу, либо не отвергаем нулевую гипотезу. Подробнее об ошибках при проверке гипотез
Следует решить, сколько аргументов позволят отвергнуть нулевую гипотезу в пользу альтернативной. Чем меньше значение р, тем сильнее аргументы против нулевой гипотезы.
Традиционно полагают, если р < 0,05, (=0,05) то аргументов достаточно, чтобы отвергнуть нулевую гипотезу, хотя есть небольшой шанс против этого. Тогда можно отвергнуть нулевую гипотезу и сказать, что результаты значимы на 5% уровне.
Напротив, если р > 0,05, то аргументов недостаточно, чтобы отвергнуть нулевую гипотезу. Не отвергая нулевую гипотезу, можно заявить, что результаты не значимы на 5% уровне. Данное заключение не означает, что нулевая гипотеза истинна, просто недостаточно аргументов (возможно, маленький объем выборки), чтобы ее отвергнуть.
Уровень значимости (т.е. выбранная "граница отсечки") 5% задается произвольно. На уровне 5% можно отвергнуть нулевую гипотезу, когда она верна. Если это может привести к серьезным последствиям, необходимо потребовать более веских аргументов, прежде чем отвергнуть нулевую гипотезу, например, выбрать значение = 0,01 (или 0,001).
Определение результата только как значимого на определенном уровне граничного значения (например 0, 05) может ввести в заблуждение. Например, если р = 0,04, то нулевую гипотезу отвергаем, но если р = 0,06, то ее не отвергли бы. Действительно ли они различны? Мы рекомендуем всегда указывать точное значение р, обычно получаемое путем компьютерного анализа.
Доверительные интервалы и проверка гипотез тесно связаны. Первоначальная цель проверки гипотезы состоит в том, чтобы принять решение и предоставить точное значение р.
Доверительный интервал (ДИ) количественно определяет изучаемый эффект (например, разницу в средних) и дает возможность оценить значение результатов. ДИ предоставляют интервал вероятных значений для истинного эффекта, поэтому его также можно использовать для принятия решения даже без точных значений р.
Например, если бы гипотетическое значение для данного эффекта (например, значение, равное нулю) находилось вне 95% ДИ, можно было бы счесть гипотетическое значение неправдоподобным и отвергнуть . В этом случае станет известно, что р < 0,05, но не станет известно его точное значение
Связанные определения:
p-уровень
Альтернативная гипотеза, альтернатива
Альфа-уровень
Бета-уровень
Гипотеза
Двусторонний критерий
Критерий для проверки гипотезы
Критическая область проверки гипотезы
Мощность
Нулевая гипотеза
Односторонний критерий
Ошибка I рода
Ошибка II рода
Статистика критерия
Эквивалентные статистические критерии
Скачать
Актуальные курсы