Уважаемые посетители Портала Знаний, если Вы найдете ошибку в тексте, выделите, пожалуйста, ее мышью и нажмите Сtrl+Enter. Мы обязательно исправим текст!


Связанные статьи


Вероятность

Связанные статьи на других порталах


Основы теории вероятностей для актуариев

Правила вероятности

Условная вероятность

Формула полной вероятности

Формула Байеса

Оценка вероятности в схеме испытаний Бернулли

Мы можем применять правила вероятности для того, чтобы складывать и умножать вероятности.

Например, у взрослого пациента все зубы сохранены, некоторые зубы отсутствуют или он беззубый; вероятности равны 0,67, 0,24 и 0,09 соответственно.

  • Правило сложения. Если два события, и , взаимоисключающие, несовместимые, то вероятность события или равна сумме их вероятностей:

    Вероятность того, что у пациента есть несколько зубов, равна 0,67 + 0,24 = 0,91.

  • Правило умножения. Если два события, и , независимы (т. е. возникновение одного события не влияет на возможность появления другого), то вероятность того, что оба события произойдут, равна произведению вероятности каждого:

    Например, если 2 не имеющих отношения друг к другу больных ожидают приема в кабинете хирургической стоматологии то вероятность того, что у обоих больных есть все зубы, равна 0,67 • 0.67 =  0,45.

Условная вероятность

Условная вероятность — вероятность одного события при условии, что другое событие уже произошло. 

Пусть  — фиксированное вероятностное пространство. Пусть  — два случайных события, причём . Тогда условной вероятностью события при условии события называется

Формула полной вероятности

Пусть событие может наступать только при условии появления одного из событий , образующих полную систему событий. Тогда вероятность события равна сумме произведений вероятностей каждого из событий на соответствующую условную вероятность события :

Эта формула носит название формулы полной вероятности.

Формула Байеса

Если вероятности событий до опыта были , то с учетом появления в результате опыта события условная вероятность вычисляется по формуле Байеса:

Оценка вероятности в схеме испытаний Бернулли

Мы приводим пример классического статистического рассуждения, которое полезно иметь в виду при анализе реальных данных. 

Бытует мнение, что при рождении ребенка вероятность мальчика такая же, как и девочки. 

Примем это за гипотезу. 

Для её проверки имеется огромный статистический материал. 

Воспользуемся данными по Швейцарии с 1871 по 1900 гг., когда там родилось человек и среди них мальчиков и девочек. 

Согласуется ли гипотеза о равновероятности рождения мальчика и девочки с этими числами? 

Условно назвав «успехом» рождение мальчика, поставим этот вопрос по-другому, обратившись к схеме Бернулли с вероятностью «успеха»

Согласуется ли гипотеза с тем, что в серии из испытаний частота «успеха» оказалось равной 

Очевидно, если вместо гипотезы выдвинуть, скажем, предположение о том, что , то это предположение будет сразу же отвергнуто как маловероятное (или даже невозможное). 

Уместно спросить: почему? Ответ здесь можно дать, основываясь на том, что частота как случайная величина (обозначим её ) подчиняется известному закону распределения. 

Эта величина имеет биномиальное распределение. При больших n имеет место нормальное приближение (в силу центральной предельной теоремы). 

Воспользовавшись нормальным приближением и задавшись малым  (будем называть  уровнем значимости), можно утверждать, например, что

с вероятностью, где   определяется из условия с помощью нормальной функции распределения

( называется квантилем уровня). Скажем,  отвечает , а  уже соответствует 

Это легко проверить с помощью калькулятора вероятностных распределений STATISTICA. Вернемся к нашим числовым данным и гипотезе , согласно которым мы имеем значение

Оно далеко выходит за границу 

Какое же значение, основываясь на этих данных, следует приписать неизвестной вероятности ?

Мы знаем, что по закону больших чисел есть предел частоты (при ), и при имеющемся у нас можно в качестве оценки взять уже приводившееся ранее значение . Эту оценку можно уточнить следующим образом. Поскольку всегда имеет место неравенство , получаем

с вероятностью, не меньшей (точнее, допущение о том, что истинное значение лежит вне этих границ, означает наступление события, дополнительного к (2) и имеющего вероятность не больше ).

В этом смысле можно утверждать, например, что  с вероятностью не меньшей 0.9973 (это получается при  с уровнем значимости ).

Данное рассуждение приведено в книге Ю.А. Розанова "Теория вероятностей, случайные процессы и математическая статистика: Учебник для вузов", М.: Наука, Главная редакция физико-математической литературы.


Связанные определения:
Вероятность события
Независимые повторные испытания Бернулли
Независимые события

В начало

Содержание портала