Испытание лекарств является важным применением статистических методов. STATISTICA является незаменимым средством, позволяющим практикующим врачам и научным работникам организовать исследование, рассчитать объем выборки, оценить зависимость доза/эффект, визуализировать данные, построить разнообразные графики и диаграммы, подтвердить результаты. Таким образом, врач делает шаг вперед к доказательной медицине.
Предлагаем Вашему вниманию конкретный проект компании StatSoft, посвященный исследованию эффективности вакцин против кори, паротита и краснухи.
Преобразование исходных данных для дальнейшего анализа
Построение для преобразованных данных гистограмм, графиков средних и других графиков в STATISTICA
В последнее десятилетие в практическое здравоохранение введено ряд новых вакцин, таких как рекомбинантные генно-инженерные вакцины против вирусного гепатита В; для профилактики заболеваемости корью, эпидемическим паротитом и краснухой, разработаны ассоциированные (т.е. совмещенные) живые вакцины. Указанные вакцины производятся как за рубежом, так и в России. Для вакцинации кори, паротита, краснухи использовали либо отечественные моновакцины, при этом ребенок получал несколько инъекций при вакцинации, либо использовали только зарубежные ассоциированные (совмещенные вакцины). В 2002 году была разработана и успешно внедрена в практическое здравоохранение отечественная ассоциированная дивакцина от кори и паротита. Основной проблемой, препятствующей современной вакцинации, является частая заболеваемость у детей и наличие у них различных инфекционных заболеваний.
Цель проводимого исследования состоит в том, чтобы изучить влияние новых вакцин против вирусных инфекций на состояние иммунного статуса, клиническую переносимость и способность детей с частыми заболеваниями адекватно отвечать на вакцинацию.
Распределить всех наблюдаемых детей в зависимости от исходного уровня здоровья и количества инфекционной нагрузки.
Оценить исходный уровень показателей иммунного статуса (CD, IL, Ig A,M.G,E, фагоцитоз ФЧ, ФИ, ЭТЛ) у детей выделенных групп, в последующем после введения вакцины посмотреть, изменяются ли эти показатели от характера вводимой вакцины во времени и от возраста.
Учитывая тот факт, что работая со средними показателями, порой не всегда можно в полной мере отследить изменения, вычислить помимо средних значений процент детей в каждой группе, имеющих значения иммунного статуса ниже нормы, в норме и выше нормы.
Провести сравнительный анализ достоверности различий по интересующим параметрам.
Оценить влияние вакцин на биохимические показатели малоновый деальдегид и глютатионредуктазу в группах наблюдения, провести сравнительный анализ достоверности в различных группах и в сравнении с исходными данными.
Определить напряженность поствакцинального иммунитета (т.е. отвечаемость, защищенность) на вводимые вакцины во всех группах наблюдения и оценить достоверность различий в сравнении по различным группам. Это позволит сделать заключение о том, зависит ли ответ на вакцину от исходного уровня здоровья.
Определить число серонегативных (т.е. не ответивших на вакцинацию) и серопозитивных (ответивших на вакцинацию низко, средне и высоко) лиц в наблюдаемых группах.
Провести сравнительный анализ достоверности серонегативности и серопозитивности между группами.
Провести корреляционный анализ для выяснения, какие показатели могут влиять на напряженность (т.е. отвечаемость) после вакцинации.
Начальные данные были собраны в базе данных Access. Каждая строка таблицы представляет собой разовое обследование ребенка. В ходе обследования измерялись следующие параметры:
параметры взятой крови ребенка;
группа, к которой относится ребенок;
тип вакцины;
тип забора.
Данная задача решалась в несколько этапов:
Данная задача является задачей всестороннего анализа данных, что делает ее трудоемкой. С другой стороны, должна быть предоставлена возможность пересчета всех результатов в случае изменения данных: удаление выбросов, обработка и преобразование пропущенных данных. В связи с этим было принято решение о написании программ на языке программирования STATISTICA Visual Basic для автоматизации решения задачи.
Перед проведением вычислений была проведена чистка данных. Ручная чистка данных включала в себя преобразования выбросов в другой формат измерений. Автоматическая чистка, т.е. чистка данных с использованием программы на языке STATISTICA Visual Basic, включала в себя удаление значений параметров, лежащих в пределах заданных границ.
Реализована программа на языке STATISTICA Visual Basic для автоматического построения выборок из данных по разным вакцинам и для разных возрастов.
Для каждой преобразованной таблицы данных была написана отдельная программа для построения следующих таблиц:
Сводная таблица для показателей и для групп детей, включающая в себя число наблюдений, среднее значение, стандартное отклонение, стандартную ошибку.
Сводная таблица для показателей и для всех групп детей, включающая в себя вероятности сходства средних.
Все вычисления для построения этой таблицы проводились с использованием однофакторного дисперсионного анализа. Несмотря на то, что в теории использование дисперсионного анализа сопряжено с выполнением таких условий, как нормальность распределений и сходство дисперсий внутри каждой группы, на практике подобное применение допустимо, если внутри каждой группы нет значительных выбросов. Заметим, что применение методов непараметрической статистики к имеющимся данным невозможно, так как число наблюдений внутри каждой группы невелико.
Матрицы корреляций Спирмена между всеми показателями. Каждая программа построения сводных таблиц предоставляет возможность автоматического сохранения в формате Excel или вывода результатов в отдельную рабочую книгу.
Каждая программа построения графиков предоставляет возможность автоматического сохранения в формате JPEG или вывода результатов в отдельную рабочую книгу.
В ходе решения задачи были написаны программы, позволяющие провести расчеты и построить результирующие таблицы и графики в течении 2-х дней, что является очень важным в практически любом научном исследовании. Объем всех полученных результатов в формате Excel и JPEG составил около 1Гб.
Скачать